Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Using split protein reassembly strategy to optically control PLD enzymatic activity.

blue CRY2/CIB1 iLID HEK293T HeLa Signaling cascade control Organelle manipulation
bioRxiv, 30 Jan 2024 DOI: 10.1101/2024.01.27.577557 Link to full text
Abstract: Phospholipase D (PLD) and phosphatidic acid (PA) play a spatio-temporal role in regulating diverse cellular activities. Although current methodologies enable optical control of the subcellular localization of PLD and by which influence local PLD enzyme activity, the overexpression of PLD elevates the basal PLD enzyme activity and further leads to increased PA levels in cells. In this study, we employed a split protein reassembly strategy and optogenetic techniques to modify superPLD (a PLDPMF variant with a high basal activity). We splited this variants into two HKD domains and fused these domains with optogenetic elements and by which we achieved light-mediated dimerization of the two HKD proteins and then restored the PLD enzymatic activity.
2.

Optogenetic strategies for optimizing the performance of biosensors of membrane phospholipids in live cells.

blue cpLOV2 CRY2/CIB1 CRY2/CRY2 LOVTRAP HEK293T HeLa Organelle manipulation
bioRxiv, 4 Aug 2023 DOI: 10.1101/2023.08.03.551799 Link to full text
Abstract: High-performance biosensors are crucial for elucidating the spatiotemporal regulatory roles and dynamics of membrane lipids, but there is a lack of improvement strategies for biosensors with low sensitivity and low-content substrates detection. Here we developed universal optogenetic strategies to improve a set of membrane biosensors by trapping them into specific region and further reducing the background signal, or by optically-controlled phase separation for membrane lipids detection and tracking. These improved biosensors were superior to typical tools and light simulation would enhance their detection performance and resolution, which might contribute to the design and optimization of other biosensors.
3.

Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes.

blue CRY2/CIB1 3T3-L1 Signaling cascade control Control of vesicular transport
J Mol Biol, 25 Jun 2020 DOI: 10.1016/j.jmb.2020.06.019 Link to full text
Abstract: Phosphoinositides are important signaling molecules involved in the regulation of vesicular trafficking. It has been implicated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in insulin-regulated GLUT4 translocation in adipocytes. However, it remains unclear where and how PI(4,5)P2 regulates discrete steps of GLUT4 vesicle translocation in adipocytes, especially on the exocytic arm of regulation. Here, we employed optogenetic tools to acutely control the PI(4,5)P2 metabolism in living cells. By combination of TIRFM imaging, we were able to monitor the temporal-spatial-dependent PI(4,5)P2 regulation on discrete steps of GLUT4 translocation in adipocytes. We found that the plasma membrane localized PI(4,5)P2 is crucial for proper insulin signaling propagation and for insulin-stimulated GLUT4 vesicle translocation in 3T3-L1 adipocytes. Global depletion of PI(4,5)P2 on the cell surface blunted insulin-stimulated Akt phosphorylation and abolished insulin effects in promotion of the docking and fusion of GLUT4 vesicle with the plasma membrane. Furthermore, by development of a novel optogenetic module to selectively modulate PI(4,5)P2 levels on the GLUT4 vesicle docking site, we identified an important regulatory role of PI(4,5)P2 in controlling of vesicle docking process. Local depletion of PI(4,5)P2 at the vesicle docking site promoted GLUT4 vesicle undocking, diminished insulin-stimulated GLUT4 vesicle docking and fusion, but without perturbation of insulin signaling propagation in adipocytes. Our results provide strong evidence that cell surface PI(4,5)P2 plays two distinct functions on regulation of the exocytic trafficking of GLUT4 in adipocytes. PI(4,5)P2 not only regulates the proper activation of insulin signaling in general but also controls GLUT4 vesicle docking process at the vesicle-membrane contact sites.
Submit a new publication to our database